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Abstract 
 
Learning based incremental 3D modeling of traffic 
vehicles from uncalibrated video data stream has enormous 
application potential in traffic monitoring and intelligent 
transportation systems. In this paper, video data from a 
traffic surveillance camera is used to incrementally 
develop the 3D model of vehicles using a clustering based 
unsupervised learning.  Geometrical relations based on 3D 
generic vehicle model map 2D features to 3D. The 3D 
features are then adaptively clustered over the frames to 
incrementally generate the 3D model of the vehicle. 
Results are shown for both simulated and real traffic video. 
They are evaluated by a structural performance measure. 
 
Keyword: Incremental Learning, Structural Reliability 
Measure, 3D Rigid Modeling 
 
 
1. Introduction 
 

Present traffic surveillance systems depend on license 
plate extraction [1]. But this method is not robust to 
illumination variations, an unavoidable problem in 
unconstrained traffic scenario. Traffic video sequences 
have enormous information content for 3D modeling of the 
vehicles in the view-scope for better tracking and 
recognition for traffic monitoring. Static uncalibrated video 
camera with moving vehicles provide different views of 
them in a partially redundant manner which can be used to 
incrementally learn the 3D model of the vehicles from a 
frame sequence. A generic vehicle model [2] can be used 
and the parameters of the model can be incrementally 
learned over the frames for the currant vehicle instance. 
Previous research in this field has mostly focused on 
vehicle detection and tracking using PCA [3], neocognitron 
[4], and learning the global eigenspace representation [5].  

While for detection and tracking current strategies can 
work, vehicle recognition in real traffic scenarios is a much 
harder problem. This is because, although 2D information 
from the image sequence can detect and even track a 
vehicle, due to different 2D projections of same 3D vehicle 
under unconstrained traffic scenario make the view 
invariant vehicle recognition a difficult problem. Some 
recent works have researched in this direction with 
unsupervised learning of scale-invariant local features of 
the object in the 2D frames [6] using structural relations, 
stereo-vision setup [7], models and neural networks [8], 

Gabor wavelet features and Gabor jet matching [9], 
infrared images [10] and several other similar methods 
[11]. In most of these image-based recognition strategies, 
rich information in the form of inter-frame view-relations 
[12] in video-data have not been utilized. And very few 
researches focused on 2D modeling and recognition of 
traffic vehicles [13]. But in most cases it has been assumed 
that the complete vehicle is visible at different orientations, 
which is not the case for the data from traffic intersection 
cameras. Hence the real applications need incremental 3D 
model learning over the frame-sequence in the face of 
partial visibility of the vehicle. Current work estimates 
frame-based 3D features of the partially seen vehicle in the 
present frame, adaptively cluster the same features over 
frame-sequence seen till that time point and incrementally 
learn the parameters of a 3D generic model (for the 
particular vehicle instance in view). The 3D model thus 
estimated can be used for automated toll-stations, traffic-
flow monitoring and several surveillance applications. 

The lower right corner of the frontal surface of the 
vehicle is considered as the origin in the object centered 
coordinate (OCC). Edges at the origin are used to 
structurally estimate the 3D orientation of the vehicle, 
using a novel template matching strategy. Variable scale-
factors of linear distances due to fore-shortening in 3D to 
2D projection is also estimated from the matched template. 
The mapping of 2D image-plane angles to 3D solid angles 
in OCC is done with approximate geometric relations. 3D 
location parameters of the vertices and orientation 
parameters of the linear edges are estimated for every 
frame using symmetry of the generic model, parallelism of 
the linear edges, estimates of the 3D-to-2D projection-
scales and other structural constraints.  

Partially redundant frame-based estimates of these 
parameters are adaptively clustered over the frame 
sequence seen up to that particular point and 3D Gaussian 
distribution is fitted. These estimates lead to a parametric 
instance (for the vehicle instance in the video clip) of an 8-
surface-8-vertices generic vehicle model [2]. The estimated 
model becomes more reliable due to incremental learning 
over the frames.  A reliability score is proposed to evaluate 
of the parameter estimates for structural correctness with 
respect to the generic model and ground-truth. This model-
driven learning approach has been tested with both 
simulated and real traffic video and evaluated using the 
reliability score mentioned. The results are encouraging 
and will be adapted for Bayesian incremental learning 
framework for classification and recognition. 



2. Technical Approach 
 
Present work is a pilot research in this direction where 

the 3D model of the vehicle is learnt incrementally over a 
video frame sequence. The key assumptions are: (i) over 
the consecutive frames the motion of the vehicle is 
relatively slow for correlation-based 2D correspondence;  
(ii) vehicle 3D surfaces can be approximated as plane 
surfaces and hence the 2D and 3D edges are straight lines; 
(iii) vehicle in 3D can rotate only around Z-axes and thus 
producing different views for change in azimuths only; and 
(iv) orthogonal projection constraints are valid. 

 
2.1 Generation of Template Library 
 

Perspective projection causes foreshortening of the 
linear distances and nonlinear mapping of the 3D solid 
angles to their 2D counterparts. While working with 
uncalibrated traffic surveillance cameras, it is difficult to 
estimate the projection matrix. In this work, 3D-to-2D 
nonlinear mapping relations are estimated using a novel 
idea called “Template Library” and these relations are used 
to estimate 3D model parameters from 2D features 
detected in frames. Orthogonality assumption implies:  

DD DKD 23 .=  
where K is different for different line orientations. Using 
the prior knowledge that most of the 3D linear edges in 
OCC are parallel to one of the coordinate axes in OCC, we 
just need three such constants along each of the coordinate 
axes (say [Kx, Ky, Kz]) for each of the possible azimuths. 

Hence a 3D coordinate axes system, with each 3D axis 
of unit length, is rotated around Z-axis for 360 possible 
azimuths and 360 template frames are grabbed. For each 
frame, a template vector is computed (offline) as follows: 
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One example frame, with 5˚ orientation (azimuth) angle is 
shown in Fig 1. Template library is the collection of 360 
such vectors for 360 possible azimuths or orientations. 
 

 
 

Fig 1: Example template fr. & corresponding template vector 
 

2.2 Finding 3D orientation and projection scales 
 

The vertices and edges of the vehicle can be extracted 
using standard image processing tools like Harris corner 
detector and Canny edge detector. For the present work, as 
incremental learning is of prime concern, the 2D vertices 
and 2D linear edges are hand-detected as 2D features. 

The lower right vertex of frontal plane (assuming to be 
seen for each considered video-frames) of the moving 
vehicle has been selected as the origin of the OCC 
framework. Notably, for a vehicle entering from the right 
and moving from right to left in the camera viewing scope 
(as considered in this work) this vertex is the “closest” 2D 
vertex to the camera, at least for initial frames. Later it is 
tracked with correlation-based correspondence when the 
“closeness” constraint is not appropriate. 

2D angles subtended by the edges at the OCC origin in 
the image-plane are extracted as shown in Fig 2. 
Orientation assumption constrains one edge-angle to be 90 
degrees (the Z axes). Ambiguity between X and Y 
directions in 2D are solved by the inter-frame motion 
computation. The angle closest to the motion angle (Φ) is 
the direction of OCC Y axes. (Note, Φ and β are not 
always same due to presence of rotation in vehicular 
motion.) As in Fig 2, we get [α β γ] in [X Y Z] directions. 
Euclidian match of [α β γ] vector over the corresponding 
vectors in the template library gives orientation R, and 
projection scales [u, v, w].  
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Fig 2: OCC origin and corresponding axes 
 

2.3 3D estimates: vertices and corresponding edges 
 

Initialization is done with the OCC origin (O) as [0 0 
0] in 3D. 2D parallelism and projection scales [u, v, w] are 
used to map the 2D edge-length (in pixels) to 3D units. 
Then, starting from O [0 0 0] and using 3D edge-lengths 
and parallelism constraints, the 3D locations of the vertices 
directly connected to O are estimated. This method is then 
propagated along different 3D edge-paths to estimate other 
vertices in turn. For vertices connected by edges not 
parallel to any of the OCC axes, (approximate) geometric 
relations are used to map image-plane 2D angles to 3D 
solid angles and then trigonometric relations estimate 3D 
locations from 2D image-plane locations.  

Saved template: [5, α1, β1, γ1, SX, SY, SZ]

 
 
 



2.4 3D features 
 

Notably, all the vertices and corresponding connecting 
edges are not seen completely in every frame. Hence all 
the vertices are decoupled according to edges connected 
and location and directional parameters are computed for 
each of the sub-vertices and corresponding (complete or 
incomplete) edges. The 3D view-invariant features 
considered in this work are: 
• 3D locations of seen sub-vertices,  ][ 321 vvvV =
• Directional parameters of the completely seen edges: e.g. 

for edge L connecting P and Q 
( ) ( ) ( )[ 332211 qpqpqpQPL ]−−−=−=  

 
2.5 Incremental learning using adaptive clustering 
 

Features estimated from a single frame are not very 
robust due to the approximations used. But it is expected 
that as one sees more and more number of frames and 
corresponding estimates of the same model parameters, the 
incrementally learnt estimates will be more reliable. In 
general for traffic video we do not have ground truth i.e. 
the 3D model of the vehicle is not available. So supervised 
learning is difficult. Hence we have used adaptive 
clustering technique with exponential forgetting capability. 
For this work the correspondence problem of the vertices 
from consecutive frames are solved manually. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3: Pseudo-code of the incremental learning procedure 
 
Steps in the incremental unsupervised learning are 

shown in Fig. 3. Adaptation step is basically outlier 
rejection for final unsupervised learning by 3D Gaussian 

distribution fitting and estimating cluster variance. This 
variance is a measure of learning performance. For the 
incrementally learnt estimate of the model parameters (that 
are 3D features as well), exponential forgetting has been 
applied on final cluster, as feature points seen long before 
are less irrelevant for present frame estimate.  

It is noteworthy that, although we are estimating a 
constant 3D model of the vehicle in the video-clip, the 
estimates from different frames are not same due to 
different noise levels and different estimation-errors due to 
geometrical projection-approximations in subsections 2.1-
2.3.  At a particular point, frames seen in the recent past 
are more closely related to the current frame in terms of 
approximation and estimation accuracy (than the distant 
past frames). Hence, for incremental estimation of the 3D 
model for the current frame, estimates from the recent 
frames are to be given more weight than those from distant 
frames. Thus the application of exponential forgetting 
principle in the present scenario is justified. 
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For each frame: 
1. Extract features for the current frame 
2. For each feature 

a. Cluster valid 3D values over seen frames 
b. Fit 3D Gaussian distribution: get mean  (µ1)

and standard deviation (σ1) 
c. Adaptation: Remove points outside (µ1 ±

2σ1) interval 
d. Unsupervised learning: Fit 3D Gaussian for

remaining feature points, get (µ, σ) 
e. Exponential forgetting: Remaining feature

points from (2.c) are added with exponential
forgetting 

f. Incrementally learn estimate: normalized
result from (2.e) 

g. Sub-vertices and edge reliability scores:
performance measure computation 

3. Incrementally learnt vertices’ estimates:
weighted sum of corresponding sub-vertices 

4. Vertices’ reliability scores: median of the sub-
vertices’ reliabilities  

5. Model reliability: function of feature
reliability scores from (2.g) and 4. 

2.6 Reliability Scores: performance measure 
 

Reliability scores are structural accuracy measure of 
the estimates, with respect to the generic model and the 
ground-truth. These scores serves dual purpose in this 
work: (i) finding dynamically adaptive weights for 
estimates of different 3D model parameters, to 
incrementally modify the model; and (ii) evaluate the 
estimated 3D model at any stage for correctness. 
Reliability has been measured at different level of 
abstractness, as follows. 

 
2.6.1 Sub-vertex reliability 
 

The factors governing reliability are: 
• Normalized StdDev: divergence in cluster (2.d, Fig 3) 

( )µσσ +=′ 1  

• SubVdisp (D): disparity of estimate V’ from actual V 
 

VVVVdispWVVsubVdisp ′−′−′−= )(**)(  
 

dispW changes according to importance of different 
directions of [X Y Z] in OCC for that vertex. 

• LnCompRatio (C): edge completeness 
 

2121 VVVVoLnCompRati −′−′=  
 



• LnAngErr (E): error between edge angle (θ) and 
ground-truth angle (φ) 

 

ϕϕθ )( −= absLnAngErr  
 

Reliability of the sub-vertices (subVrlb) are computed 
as weighted sum of the factors where weights (rlbW) are 
decided according to their importance at different cases 
(like complete and not complete): 

 

[ TEDCrlbWsubVrlb )1/(1)1()1/(1* σ ′+−+= ]  
 
2.6.2 Incremental vertex estimate 
 

Vertex incremental estimates are found by weighted 
sum of the corresponding visible sub-vertices, where 
weights coming from the sub-vertex reliabilities: 
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2.6.3 Vertex reliability (Vrlb) 
 

It is the median of the reliability values of the 
corresponding visible sub-vertices for the present frame. 

 

2.6.4 Edge reliability 
 

Edge reliability factors are disparity values and 
reliability values of the terminal sub-vertices, 
LnCompRatio, LnAngErr, and StdDev (σ) (from 2.d, Fig 
3) of the linear edge. These factors are weighted (rlbW) 
accordingly and summed up to get edge reliability. 
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2.6.5 Model reliability 
 

It is the normalized sum of the reliability values of the 
visible vertices and edges.  
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3. Results and discussion 
 
3.1 Traffic video data 

 

• Simulated data: An 8-vertex-8-surface block-based 
vehicle has been developed and its motion has been 
simulated with both translation and orientation change over 
the frames. In this case we have the ground-truth for better 
reliability measurement and hence for the evaluation of the 
incremental learning framework proposed in this work. 
 
• Real Traffic video: Real traffic video data has been 
collected by an uncalibrated camera in a right-angle street-
curve so that the vehicles go slow giving enough frames 
and also multiple different views for modeling. As actual 
ground-truth is not known, for this data we have manually 

estimated an approximate 3D model and used as ground-
truth 3D. Hence the reliability measures are not accurate. 

 
3.2 Results for simulated data 

 

For the simulated vehicle data, number of exponential 
scale factors (L) has been varied from 0.5 to 0. For L = 0.5, 
incremental estimates at frames 25 (Fig 4(a)) and 100 (Fig 
4(b)) are shown.  

The model reliability value over the complete video 
sequence is shown in Fig 5. As expected for incremental 
learning, the reliability value increases gradually as more 
frames are seen with minor deviations due to some newly 
seen vertex affecting other estimations. Note, some of the 
vertices are never seen over the entire video sequence. 
Although not adopted in this work, generic symmetry can 
be used to estimate them and to improve model reliability. 

 

(a) 
 

(b) 
Fig 4: Incremental models after frame (a) 25 and (b) 100   
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Fig 5: Reliability of the es
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3.3 Results for real traf
 

For real traffic data
speed and hence vehicl
correlation between fram
due to noise as well). 
exponential forgetting 
estimates.  

For the real traffic
based results are shown
shown with superimposit

To evaluate the p
manually estimated an ap
of the car in this video an
rame numbers
  
timated 3D model (simulated video) 

fic data 
, there is no control over vehicle 
e view changes quicker (i.e. less 

es and estimates may fluctuate 
Hence we have used L = 0.7 in 
to give more weights to recent 

 video data, incremental frame-
 in Fig 6 and 7, with the results 
ion on the actual frames as well. 
roposed methodology, we have 
proximate block-based 3D model 
d computed reliability measures.  



 
(a) 

 
 

(b) 
Fig 6: Estimated 3D model after Frame 6 (traffic video) 

 

 
(a) 

 
(b) 

Fig 7: Estimate 3D model after Frame 22 (traffic video) 
 

 
Fig 8: Reliability of the estimates 3D model (traffic video) 

 
The reliability value of the estimated 3D model over the 
video clip is shown in Fig 8. Due to inherent noise in real 
traffic data, coarse ground-truth model for performance 
measurement, and relatively less number of frames for a 
particular vehicle, 3D model estimated from real traffic 
data is less reliable. 

4. Conclusions 
 

This paper is an initial attempt of learning based 
incremental 3D modeling of vehicle, a rigid object, from 
video frame-sequence in an uncalibrated environment. The 
results are encouraging. The performance for real traffic 
video data can be improved if we acquire more number of 
frames per vehicle (possibly at higher frame-rate) and 
possibly from a view-angle where top-surface of the 
vehicle is also visible, as in the simulated case. Even with 
the present data, without using a manually estimated 3D 
model as ground-truth for real-traffic-data, we can use the 
estimated incremental model after the last frame as ground-
truth. This shifts the approach more towards unsupervised 
learning, but requires proper initialization. The estimates 
from frames can be used in a Bayesian framework to 
achieve a probabilistic way of incremental modeling and 
model classified using a computable reliability measure. 
We are working at present in this direction. The generic 
model constraints and 3D structural relations (of the 
vertices, edges and surface-normals) can be used to select a 
learning strategy from a pool of possibilities as well, 
bringing in semi-supervised nature in this incremental 
learning framework. These will be our future research area. 
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